Differences in whole-cell and single-channel ion currents across the plasma membrane of mesophyll cells from two closely related Thlaspi species.
نویسندگان
چکیده
The patch clamp technique was used to study the physiology of ion transport in mesophyll cells from two Thlaspi spp. that differ significantly in their physiology. In comparison with Thlaspi arvense, Thlaspi caerulescens (a heavy metal accumulator) can grow in, tolerate, and accumulate very high levels of certain heavy metals (primarily zinc [Zn] and cadmium) in their leaf cells. The membrane conductance of every T. arvense leaf cell was dominated by a slowly activating, time-dependent outward rectifying current (SKOR). In contrast, only 23% of T. caerulescens cells showed SKOR activity, whereas the remaining 77% exhibit a rapidly developing instantaneous K(+) outward rectifier (RKOR) current. In contrast to RKOR, the channels underlying the SKOR current were sensitive to changes in the extracellular ion activity. Single-channel recordings indicated the existence of K(+) channel populations with similar unitary conductances, but distinct channel kinetics and regulation. The correlation between these recordings and the whole-cell data indicated that although one type of channel kinetics is preferentially activated in each Thlaspi spp., both species have the capability to switch between either type of current. Ion substitution in whole-cell and single-channel experiments indicated that although the SKOR and RKOR channels mediate a net outward K(+) current, they can also allow a significant Zn(2+) permeation (i.e. influx). In addition, single-channel recordings allowed us to identify an infrequent type of plasma membrane divalent cation channel that also can mediate Zn(2+) influx. We propose that the different K(+) channel types or channel states may result from and are likely to reflect differences in the cytoplasmic and apoplastic ionic environment in each species. Thus, the ability to interchangeably switch between different channel states allows each species to constantly adjust to changes in their apoplastic ionic environment.
منابع مشابه
Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملThe effect of inclined radial flow in proton exchange membrane fuel cells performance
Computational fluid dynamics analysis was employed to investigate the radial flow field patterns of proton exchange membrane fuel cells (PEMFC) with different channel geometries at high operating current densities. 3D, non-isothermal was used with single straight channel geometry. Our study showed that new generation of fuel cells with circle stack with the same active area and inlet area gave ...
متن کاملHyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level.
Vacuolar compartmentalization or cell wall binding in leaves could play a major role in hyperaccumulation of heavy metals. However, little is known about the physiology of intracellular cadmium (Cd) sequestration in plants. We investigated the role of the leaf cells in allocating metal in hyperaccumulating plants by measuring short-term (109)Cd and (65)Zn uptake in mesophyll protoplasts of Thla...
متن کاملDifferential ion accumulation and ion fluxes in the mesophyll and epidermis of barley.
In barley (Hordeum vulgare L.) leaves, differential ion accumulation commonly results in inorganic phosphate (Pi) being confined to the mesophyll and Ca(2+) to the epidermis, with preferential epidermal accumulation of Cl(-), Na(+), and some other ions. The pattern was confirmed in this study for major inorganic anions and cations by analysis of barley leaf protoplasts. The work focused on the ...
متن کاملStretch-activated single K+ channels account for whole-cell currents elicited by swelling.
Functionally significant stretch-activated ion channels have been clearly identified in excitable cells. Although single-channel studies suggest their expression in other cell types, their activity in the whole-cell configuration has not been shown. This discrepancy makes their physiological significance doubtful and suggests that their mechanical activation is artifactual. Possible roles for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 131 2 شماره
صفحات -
تاریخ انتشار 2003